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Abstract

DSP architectures typically provide indirect addressing modes with auto-increment and decrement.
In addition, indexing mode is not available, and there are usually few, if any, general-purpose
registers. Hence, it is necessary to use address registers and perform address arithmetic to access
automatic variables. Subsuming the address arithmetic into auto-increment and auto-decrement modes
improves the size of the generated code.

In this paper we present a formulation of the problem of optimal storage assignment such that
explicit instructions for address arithmetic are minimized. We prove that for the case of a single
address register the decision problem is NP-complete. We then generalize the problem to multiple
address registers. For both cases heuristic algorithms are given. Our experimental results indicate an
improvement of 3% to 20% in code size.

1 Introduction

Microprocessors such as microcontrollers and fixed-point digital signal processors (DSPs) are

increasingly being embedded into many electronic products. In fact, the use of microprocessors in

embedded systems outnumbers the use of processors in both the PC and the workstation market

combined. Two trends are becoming clear in the design of embedded systems. First, cost, power

and reliability considerations are forcing designers into taking the next step: incorporating all the

electronics—microprocessor, program ROM and RAM, and application-specific circuit components—

into a single integrated circuit. Second, the amount of software incorporated into embedded systems

�
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is growing larger and more complex.

The first trend elevates code density to a new level of importance because program code resides in

on-chip ROM, the size of which translates directly into silicon area and cost. Moreover, designers often

devote a significant amount of time to reduce code size so that the code will fit into available ROM;

as exceeding on-chip ROM size could require expensive redesign of the entire IC [7, p. 18] and even

of the whole system. The second trend—increasing software and system complexity—mandates the use

of high-level languages (HLLs) in order to decrease development costs and time-to-market. However,

current compilers for microcontrollers and fixed-point DSPs generate poor code—thus programming

in a HLL can incur significant code performance and code size penalties.

While optimizing compilers have proved effective for general purpose processors, the irregular

data-paths and small number of registers found in embedded processors, especially fixed-point DSPs,

remain a challenge to compilers. The direct application of conventional code optimization methods

(e.g., [2]) has thus far been unable to generate code that efficiently uses the features of fixed-point

DSP microprocessors.

We believe that generating the best code for embedded processors will require not only traditional

optimization techniques, but also new techniques that take advantage of special architectural features

and that decrease code size. This paper presents one of our efforts at developing such techniques: a

data lay-out algorithm that decreases code size.

Many architectures (e.g., the VAX, TI TMS320C25, most embedded controllers) provide indi-

rect addressing modes with auto-increment/decrement arithmetic. These features allows for efficient

sequential access of memory and increase code density because they subsume address arithmetic

instructions and result in shorter instructions in variable-length instruction architectures. In particular,

DSPs and embedded controllers are designed assuming software that runs on them would make heavy
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use of auto-increment/decrement addressing. Sometimes, DSPs and controllers have such a restricted

set of addressing modes that the set does not include a mode for indexing with an offset. Therefore,

it is necessary to allocate a register and perform address arithmetic to access variables. Subsuming

the address arithmetic into auto-increment and auto-decrement modes improves both performance and

size of the generated code.

The placement of variables in storage has a significant impact on the effectiveness of subsumption.

Our compiler delays storage allocation of variables, moving it from the front-end to the code generation

step that selects addressing modes, thus increasing opportunities to use efficient auto-increment/auto-

decrement modes. We formulate this delayed storage allocation as the offset assignment problem.

First, we consider a simpler problem that we call simple offset assignment (SOA). A solution to

the SOA problem assigns optimal frame offset to variables of a procedure assuming that the target

machine has a single indexing register with only the indirect, auto-increment, and auto-decrement

addressing modes. For the SOA problem, we represent a procedure by its sequence of variable

accesses. We convert the access sequence into an access graph with weighted edges. We show that

the SOA problem is equivalent to a linear graph covering problem of the access graph and that the

decision problem for SOA is NP-complete.

Bartley was the first to address the SOA problem and presented an approach based on finding a

Hamiltonian path on the graph [4]. However, his algorithm runs in
����� 3 ���	� time, where

�
is the

number of variables and � is the length of the sequence of variable accesses.

In this paper we provide a more formal treatment of the problem and present an
����


log

 ���	�

algorithm that produces near-optimal solutions, where



is the number of edges in the graph. We also

extend SOA to the general offset assignment problem (GOA) that handles multiple index registers.

We show how the heuristics used for SOA are used to efficiently solve GOA. Our formulation of the
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offset-assignment problem also lends itself naturally to application-specific code optimization in the

presence of trace information from actual applications. Experimental results are presented.

2 Processor Model and Notations

For the purpose of exposition, we use a simple processor model that reflects the addressing

capabilities of most DSPs. The model is an accumulator-based machine. Each operation involves the

accumulator and another operand from the memory. Memory access can occur only indirectly via a

set of address registers, AR0 through AR
�����

1 � . Furthermore, if an instruction uses AR � for indirect

addressing, then in the same instruction AR � can be optionally post-incremented or post-decremented

by one at no extra cost. If an address register does not point to the desired location, it may be

changed by adding or subtracting a constant, using the instructions ADAR and SBAR. Also, to initialize

an address register, the LDAR instruction is used.

We use *(AR � ), *(AR � )+, *(AR � )- to denote indirect addressing through AR � , indirect addressing

with post-increment, and indirect addressing with post-decrement, respectively.

3 Simple Offset Assignment

In this section we assume that only one address register is used to address all variables. We

describe the optimization problem corresponding to assigning offsets to variables in a frame so as

to obtain the most compact code. This implies that we have to minimize the number of instructions

whose sole function is setting AR0 to point to appropriate locations in the frame.
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ADD   *(AR0)

STOR  *(AR0)

SBAR  AR0,5

ADAR  AR0,3

SBAR  AR0,3

ADAR  AR0,3

SBAR  AR0,3

ADAR  AR0,2

ADAR  AR0,2

SBAR  AR0,5

ADAR  AR0,3
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; b
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; d
; e
; f

; a

; d

; a

; d

; a

; c
; d

; f

; a

; d

(a)

(b) (c)

LDAR  AR0,&a

Figure 1: (a) Code sequence (b) Offset assignment (c) Assembly code

3.1 Example

As an example illustrating the offset assignment problem, consider the C program in Figure 1(a).

Assume that the offset assignment to the various variables is as shown in Figure 1(b). The assembly

code for the C program is shown in Figure 1(c). In the assembly code, the comment after an instruction

indicates which variable AR0 points to after the instruction is executed. The instructions SBAR and

ADAR are used to change AR0 to point to the frame location accessed in the next instruction.

Assume that AR0 initially points to the bottom of the frame, i.e., variable a. The value of the

variable a is loaded in the accumulator, and AR0 is incremented in the first LOAD instruction. In the

second ADD instruction, the values in a and b are summed and stored in the accumulator; further,

AR0 is incremented. Next, using the instruction STOR the contents of the accumulator is stored in

the location corresponding to variable c. When the assembly instructions corresponding to a = a + d

are to be executed, we have to load a into the accumulator, but AR0 points to f. Therefore, we
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AR0

c = a + b;
f = d + e;
a = a + d;
c = d + a;
d = d + f + a;

(a)

(b) (c)

LOAD  *(AR0)

ADD   *(AR0)−
STOR  *(AR0)−
LOAD  *(AR0)

ADD   *(AR0)+
STOR  *(AR0)+
LOAD  *(AR0)+
ADD   *(AR0)−
STOR  *(AR0)+
LOAD  *(AR0)−
ADD   *(AR0)

STOR  *(AR0)−
LOAD  *(AR0)

ADD   *(AR0)+
ADD   *(AR0)+
STOR  *(AR0)

ADAR  AR0,3

SBAR  AR0,3

ADAR  AR0,2

SBAR  AR0,2

; a

; b
; c
; d

; e
; f
; a
; d
; a
; d
; a

; c
; d

; f
; a
; d

LDAR  AR0,&a

Figure 2: (a) Code sequence (b) Different Offset assignment (c) Assembly code

have to subtract 5 from the contents of AR0 using an explicit instruction SBAR AR0,5. All in all,

nine SBAR and ADAR instructions are required to execute the code of Figure 1(a), given the offset

assignment of Figure 1(b).

Now consider the offset assignment of Figure 2(b) for the same C code. Assume as before that

the AR0 register points to variable a initially. We require the shorter assembly code sequence of

Figure 2(c) to execute the C code of Figure 2(a). Only four SBAR and ADAR instructions are required

to execute the code of Figure 2(a).

We define the cost of an assignment to be the number of SBAR and ADAR instructions required.

3.2 Assumptions in SOA

The simple offset assignment (SOA) problem involves assigning an offset to each of the local

variables to minimize the number of instructions required to perform address arithmetic in a basic

block under the following assumptions:

� A single address register.
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� One-to-one mapping of variables to locations.

� The basic block has a fixed evaluation order (schedule).

3.3 Approach to the Problem

Our approach to solving the SOA problem is to formulate it as a well-defined combinatorial

problem of graph covering, called maximum weight path covering (MWPC). From a basic block we

derive a graph, called an access graph, that gives the relative benefits of assigning each pair of

variables to adjacent locations. By solving the MWPC problem, we can construct an assignment with

minimum cost. We then show how to reduce an instance of the Hamiltonian path problem into an

instance of MWPC, demonstrating that a fast exact algorithm for SOA will elude us. At the end of

this section, we present a heuristic algorithm to solve for SOA.

3.4 Access Sequence and Access Graph

Given a code sequence C that represents a basic block, we can uniquely define an access sequence

for the block. Given an operation c = a op b, the access sequence is a b c. The access sequence

for an ordered set of operations is simply the concatenated access sequences for each operation in

the appropriate order. The access sequence for the basic block of Figure 2(a) is shown in Figure 3(a).

With the notion of the access sequence, it is easily seen that the cost of an assignment is equal to

the number of adjacent accesses of variables that are not assigned to adjacent locations. For instance,

four address arithmetic instructions are required for the offset assignment in Figure 2, since the

following two-symbol substrings of the access sequence refer to variables assigned to non-adjacent

locations: a b, d e, a c, and d f.

The access graph
������� 
��

is derived from an access sequence as follows: Each node 	�
 � in

the graph corresponds to a unique variable. An edge ��
 � 	�� � 	�� � 
 
 between nodes 	�� and 	�� exists
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a b c d e f a d a d a c d f a d

2
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1
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b

c d

e

f

(b)

Figure 3: (a) Access sequence (b) Access graph

with weight � � � � if variables i and j are adjacent to each other � � � � times in the access sequence.

Note that it does not matter if i is before j or if i is after j since we can both auto-increment

and auto-decrement AR0 during any load, store, or arithmetic instruction. The access graph for the

basic block of Figure 2(a) is shown in Figure 3(b).

Thus, in term of the access graph, the cost of an assignment is equal to the sum of the weights

of all edges that do not connect variables assigned to adjacent locations. For the example in Figure 2,

the edges
�
a,b

�
,
�
a,c

�
,
�
d,e

�
, and

�
d,f

�
are such edges, and these edges have a total weight of four.

3.5 SOA and Maximum Weighted Path Covering

Definition 3.1 A path
�

in
�

is an alternating sequence of nodes and edges � 	 1
� � 1

� 	 2
� � 2, ����� ,

����� 1
� 		��
 , where � � 
 � 	�� � 	��
� 1

� 
 
 , and no 	�� appears more than once on the path.

Definition 3.2 Two paths are said to be disjoint if they do not share any nodes.

Definition 3.3 A disjoint path cover (henceforth cover) of a weighted graph
�

is a subgraph � ��� � 
�� �

of
�

such that:

� For every node 	 in � , deg
� 	 ��� 2;
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� There are no cycles in � .

Note that the edges in � form a set of disjoint paths (some of which may contain no edges), hence

the name.

Definition 3.4 The weight of a cover � is the sum of the weights of all edges of � . The cost of a

cover � is the sum of the weights of all edges in
�

but not in � :

cost
� � � 
 �������� �	���
 �

� � � �

Definition 3.5 An offset assignment � is said to be implied by a cover � if edge � �
� � 	 � 
 � implies

variables
�

and 	 are adjacent in � .

Definition 3.6 (MWPC) Given an access graph
�

, find a cover � with maximum weight. This is

equivalent to finding a cover with minimum cost.

We now show that solving the MWPC problem is equivalent to solving the simple offset assignment

problem.

Lemma 3.1 Given a cover � of
�

, all offset assignments implied by � have cost less than or equal

to the cost of the cover.

Proof Let � be any assignment implied by � . As seen in Section 3.4, the cost of the assignment

is equal to the sum of the weights of all edges
�
� � 	 � such that � � ��� � � � � 	 � ��� 1, where � ��� �

denotes the offset of variable
�

under assignment � . By Definition 3.5, these edges are a subset of

edges in
�

but not in � . (There may well exist nodes
�

and 	 such that � � ��� � � � � 	 � � 
 1 but

�
� � 	 � is not in � .) Thus the cost of this assignment is at most equal to that of � .
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(a) (b)

Figure 4: (a) A disjoint path cover (b) an implied assignment with a cost of four

Figure 4 gives an example of a cover and an implied assignment with cost less than that of the

cover. The edge
�
a,f

�
is not in the cover; but it does connect two variables assigned to adjacent

locations. Thus, the cost of the cover is six, whereas the cost of this particular implied assignment

is four. Comparing with the cover in Figure 5, it is evident that this cover is not optimal.

Lemma 3.2 Given any offset assignment � and an access graph
�

, there exists a disjoint path cover

� which implies � and which has the same cost as � .

Proof Given an assignment � , we construct a disjoint path cover � as follows: for each pair of

nodes
��� � 	 � such that � ��� � 
 � � 	 � � 1, we pick the edge

�
� � 	 � , if it exists in
�

, to be included in

� . � is a disjoint path cover because no node in � has a degree greater than two (a variable can

have at most two neighbors) and there are no cycles (we are not considering memory wrap-around).

Furthermore, � implies � by construction. The edges in
�

but not in � are exactly those which

connect two nodes with non-adjacent assignments, and thus the cost of � is exactly equal to that of

� .

Theorem 3.1 Every offset assignment implied by an optimal disjoint path cover is optimal.

Proof Let � be an optimal disjoint path cover � with cost � . Suppose there is an assignment (not
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Figure 5: Covering on access graph

necessarily implied by � ) with cost �
���

� . Since an offset assignment implies the existence of a

disjoint path cover with the same cost (Lemma 3.2), there is a disjoint path cover with cost �
�

which

is less than � . This contradicts our assumption that � is an optimal cover. Hence, no assignment has

a cost strictly less than � , and all assignments implied by � have cost � (Lemma 3.1).

Theorem 3.1 allows us to arrive at an optimal simple offset assignment by solving the corresponding

maximum weight path covering problem. Intuitively, an edge denotes the number of times two variables

are accessed immediately one after another and hence the number of address arithmetic instructions

necessary if these two variables are not assigned to adjacent locations. Therefore, by selecting a cover

with the maximum weight we minimize the number of address arithmetic instructions required.

Consider the access graph of Figure 5. The dark edges beginning from variable e and ending

at variable b form a maximum weighted path covering (using a single path). This path corresponds

to the offset assignment of Figure 2(b). The unselected edges in Figure 5 have a weight of 4. This

means that the number of instructions required to explicitly manipulate AR0 is 4. This is indeed true

as seen in Figure 2(c).

The following theorem shows that the corresponding decision problem for MWPC is NP-complete.

Theorem 3.2 Given an access graph
�

and a number � , the problem of deciding whether there
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exists a cover with weight greater than or equal to � is NP-complete.

Proof MWPC 
 NP, since we can verify the weight of a given cover in linear time. We prove

that MWPC is NP-complete by reduction from the Hamiltonian path problem. Given an undirected

graph � , we assign a unit weight to each edge. Now a Hamiltonian path exists if and only if there

exists a cover with weight equal to �
�

1, where � is the number of nodes.

We have in essence reduced SOA to MWPC. The following theorem shows that SOA is also

NP-complete; hence, MWPC is no harder than SOA.

Theorem 3.3 Given an undirected graph
� ��� � 
 �

and a weighting function � :

��

N, there exists

an access sequence with access graph
� � 
 �

and weighting function � � 
 4 � � 2.

Hence, we will need to develop efficient heuristic algorithms to solve SOA and MWPC for large

problems. For small problems, a branch-and-bound procedure is feasible.

3.6 A Heuristic Algorithm for SOA

We describe a heuristic algorithm for SOA/MWPC that is similar to Kruskal’s maximum spanning

tree algorithm [1]. The algorithm is greedy in that at each step the edge with the largest weight is

selected that does not yield a cycle and does not increase the degree of a node to more than two.

The heuristic algorithm is shown in Figure 6. With careful implementation, this algorithm can run

in
����


log

 � time. Since constructing the access graph requires

� � �	� time, where � is the length

of the procedure, the total running time is
� ��


log

 � � � . As our experimental results demonstrate,

this heuristic often produces a solution quite close to the optimal solution.

As an example of applying the heuristic algorithm consider the access graph of Figure 3(c). We

first pick edges
�
a,d

�
,
�
a,f

�
and

�
c,d

�
. We reject

�
a,b

�
and

�
a,c

�
because each causes a cycle.
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1SOLVE-SOA( � )
2 �
3 /* � = access sequence for basic block */
4

������� 
����
ACCESS-GRAPH( � );

5 �
�� sorted list of edges in



6 in descending order of weight;
7

� � ��� � � 
 � �
:
� � � �

,

 � ���

;
8 while ( � 
 � � � � � � � 1 and �
��
 � ) �
9 choose � � first edge in �
 ;

10 �
	� �
 � � ;
11 if ( ( � does not cause a cycle in

� �
) and

12 ( � does not cause any node in
� �

13 to have degree � 2) )
14 add � to


 �
;

15 else
16 discard � ;
17 

18 /* Construct an assignment from


 �
*/

19 return CONSTRUCT-ASSIGNMENT
��
 � � ;

20 


Figure 6: Heuristic Algorithm for SOA
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Next, we pick
�
b,c

�
. We reject

�
d,e

�
and

�
d,f

�
and finally pick

�
f,e

�
. This results in the selection

of the dark path of Figure 5 which is an optimal offset assignment.

4 General Offset Assignment Problem

We describe the generalization of SOA to the case where there are
�

address registers, AR0

through AR
��� �

1 � .

In this generalization, we make the following additional assumptions:

1. There is a fixed cost of introducing the use of an address register. This set-up cost reflects the

cost associated with initialization upon entry to the procedure and re-initialization after return

from a callee.

2. Each address register is used to point to a disjoint subset of variables.

Definition 4.1 Let � be the access sequence of the basic block, and
�

be the set of variables in � .

The access subsequence generated by � � �
is the subsequence of � consisting of variables in � .

Definition 4.2 (GOA) Given an access sequence � , the set of variables
�

, and the number of

address registers
�
, find a partition of

�
, � 
 � � 1

� �
2
� ����� � � � 
 , where � � �

, such that the total

cost of the optimal SOA of the corresponding access subsequences plus the setup costs for using �

registers is minimum.

4.1 Example of GOA

Consider the access sequence and graph shown in Figure 7(a). The optimal cover is also shown,

with a cost of six. Now consider allocating a second address register for the variables b and c. The

access subsequences and graphs induced by this partition are shown in Figure 7(b) and (c). Assuming

14
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a b d

c

e

4 4

4

2

1 1

5

(a)

abdceabcdbdecdcbabcdbc

cost = 6

adeaddedad bcbcbccbbcbc

a d
4

e

31

cost = 1

c b
9

cost = 0

(b) (c)

Figure 7: (a) Access sequence and graph (b) Access subsequence and graph generated by � a,d,e 
 (c)
Access subsequence and graph generated by � b,c 


a setup cost of one, the cost of using two address registers on this partition is two. In this case,

there is an advantage in introducing a second address register.

4.2 A Heuristic Algorithm for GOA

Clearly, an exact solution to this problem is too expensive to compute. Figure 8 gives a heuristic

algorithm for solving GOA. SUBSEQ( � ,
�

) denotes the access subsequence of � generated by
�

. Our

heuristic is to build up the partition blocks incrementally by repeatedly selecting a subset of nodes

as a new partition block.

The function SOLVE-GOA returns a collection of disjoint ordered sets of variables which forms a

partition of the set of all variables. The order of each subset gives an offset assignment. Given an

access sequence � , SOLVE-GOA first computes the SOA of � . If there is only one address register,

the solution is simply the SOA. Otherwise, SOLVE-GOA calls SELECT-VARIABLES to choose a subset
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1SOLVE-GOA( � ,
�

)
2 �
3 /* � = access sequence of basic block */
4 /*

�
= number of address registers */

5 � � SOLVE-SOA
� �	� ;

6 if (
� 
 
 1)

7 return � � 
 ;
8

� �
SELECT-VARIABLES

� � � ;
9 �

1
�

SUBSEQ( � ,
�

);
10 �

2
�

SUBSEQ( � , �
� �

);
11 � 1

�
SOLVE-SOA( � 1);

12 � 2
�

SOLVE-SOA( � 2);
13 if (setup-cost + cost( � 1) + cost( � 2) � cost( � ))
14 return � � 
 ;
15 else
16 return � � 1 
�� SOLVE-GOA( � 2

� � �
1);

17 


Figure 8: Heuristic Algorithm for GOA

of the variables in � and solves SOA on the derived subsequences � 1 and �
2. If the cost of this

split along with the setup cost is more expensive than that of � , there is no benefit in introducing

the new partition block and the current solution � is returned. Otherwise, it is advantageous to

introduce a new address register for this subset of variables, and SOLVE-GOA is recursively called

for the remaining variables.

The procedure SELECT-VARIABLES selects a subset of variables for which a new partition block

may be created. It is important to note that on line 13 of the algorithm in Figure 8 we are making the

assumption that, if allocating a new address register for the subset � 1 returned by SELECT-VARIABLES

does not reduce the cost, then further partitioning will not improve either. In other words, we assume

that if there is a “good” subset of variables, SELECT-VARIABLES will find it at the first opportunity.

To develop good heuristics for this procedure, we make the following observations:
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L6 L3

L5 L1xfirst: ifirst: 

last: j last: j

Figure 9: Fragment of a control-flow graph

1. If an access subsequence consists of two variables, then the cost for this access subsequence is

just the setup cost. No switching cost is incurred.

2. If a node in an access graph has more than two edges, the associated minimum penalty for

retaining the node in the graph is the sum of the weights on all edges except the two with the

largest weights. Hence, if a variable has a high penalty, then it may be beneficial to move it

to another partition block.

Thus, a simple heuristic for SELECT-VARIABLES is to select the two variables with the largest

penalty, and the cost we have to pay for allocating a new address register is just the setup cost.

However, as we have observed in our experiments (see Section 6), it is sometimes more profitable

to select more than two variables at once, and the best choice depends on the program itself. We

are presently investigating more powerful techniques for performing this variable selection.

5 Offset Assignment for a Procedure

The access graph model for offset assignment gives exact results for basic blocks. However, in

the presence of control-flow, modeling the exact cost of offset assignment is more difficult. To see

this, consider the fragment of a control-flow graph shown in Figure 9, where each node denotes a

basic block. The last variables accessed in blocks L6 and L3 are j, and the first variables accessed

in blocks L5 and L1 are x and i, respectively.
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Since L3 can be followed by either L5 or L1, it is not obvious whether we should add an edge

between j and x, or between j and i, or both. Whichever we choose, the graph does not model the

cost exactly. For instance, if we do both, and it turns out that in the final assignment j is adjacent

to i (say immediately below i), then according to the access graph we need to pay a cost of two

on the edge
�
j,x

�
for this portion of the control-flow graph due to the control-flow edges

�
L6,L5

�

and
�
L3,L5

�
. However, if at the end of L6 and L3 we do perform auto-increment after accessing

j so that upon exit on either block the address register points to i, then all we need to do is set

the address register to point to x, thereby incurring a cost of one, rather than two. It is interesting

to note that, even though at the end of L6 auto-incrementing the address register does not make it

point to x, we still perform auto-increment anyway. This is because in some machines, such as the

TMS320C25, setting the address register from an unknown value has a higher cost than setting it from

a known value. The former usually involves an immediate address which takes another instruction

word, whereas the latter requires only an address arithmetic instruction. Hence, it is preferable that

upon entering a basic block that the contents of the address register are known.

Our current approach is to merge the access graphs for all basic blocks, with equal weighting,

and to treat variables connected by control-flow edges (e.g.,
�
j,i

�
and

�
j,x

�
) in the same way. Then,

after offset assignment, a separate pass is used to determine whether auto-increment/decrement should

be used at the end of each basic block.

If our goal is to optimize for execution speed, then this formulation will correctly reflect the actual

cost (up to the accuracy of the execution frequency estimate of the basic blocks and control-flow

edges). In this case, the access graph for each basic block is weighted by its estimated execution

count (from either static estimation or profiling information), and likewise for control-flow edges.
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program decl. order greedy SOA b-b SOA greedy GOA b-b GOA
#inst. #inst. %red. #inst. %red. #inst. %red. #sel. #inst. %red. #sel.

chendct 756 730 3.5% 728 3.7% 651 13.9% 2 651 13.9% 2
chenidct 817 778 4.8% 776 5.0% 650 20.5% 3 650 20.5% 3
leedct 893 842 5.7% 841 5.8% 760 14.9% 4 760 14.9% 4
ileedct 1017 949 6.7% 948 6.8% 819 19.5% 6 815 19.9% 6

jrev 4296 4070 5.3% 4057 5.6% 3387 21.2% 3 3387 21.2% 3
readgif 648 599 7.6% 589 9.1% 550 15.2% 5 551 15.0% 3

autocrop 549 534 2.7% 531 3.3% 520 5.3% 2 520 5.3% 2
smooth 4002 3841 4.0% 3837 4.1% 3621 9.5% 3 3617 9.6% 3
hufftree 956 914 4.4% 907 5.1% 856 10.5% 3 858 10.3% 3
gnucrypt 3188 3063 3.9% 3065 3.9% 2958 7.2% 2 2955 7.3% 2

Table 1: Experimental results

6 Experiments and Results

We have implemented the heuristic algorithms of Sections 3 and 4. In addition, we have im-

plemented a branch-and-bound procedure for solving SOA in order to evaluate the heuristic SOA

algorithm. All the implementations handle not only basic blocks, but entire procedures, with the

formulation described in Section 5.

Table 1 shows our experimental results on ten routines typical of those found in DSP and

embedded applications. The first five programs are core routines from a JPEG-MPEG package. The

next three are graphics routines from the xv program. Hufftree is a routine from gzip that builds a

Huffman encoding tree, and gnucrypt is the GNU implementation of the DES encryption algorithm.

The column labeled “decl. order” gives the (overall) size of each program for the offset assignment

based on the order in which the variables are declared. Program sizes, along with the percentage

reduction, obtained using the greedy heuristic of Figure 6 and using a branch-and-bound procedure

are shown next. The last columns show the results of using GOA (Figure 8) with four address

registers (
� 
 4). The column labeled “b-b GOA” uses the same GOA algorithm, but calls the

branch-and-bound procedure for SOA instead of the greedy SOA heuristic. In all cases of GOA, a
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simple heuristic for SELECT-VARIABLES is used: select the � nodes with the highest penalty. However,

we have observed that no fixed value of � gives the best result overall, and in Table 1 the best

value of � is shown for each example (in the columns marked “# sel.”). Hence, there are many

opportunities to improve on the variable selection algorithm.

For simple offset assignment, the reduction in code size ranges from 3% to 9%. For general

offset assignment, the reduction ranges from 5% to 20%. Thus, depending on the program (number

of variables and the way they are accessed), GOA can potentially achieve substantial improvements.

In all cases the greedy heuristic arrives at solutions very close to the optimal. It is interesting

to note that in a few cases the greedy heuristic for SOA actually outperforms the branch-and-bound

procedure. The reason for this is that the heuristic and branch-and-bound procedure found different

optimal solutions for the path-covering problem, and in the presence of control-flow the access-graph

model does not exactly reflect the real cost, which depends on the actual offset assignment.

An obvious (though not very tight) lower bound for the offset assignment problem is the size

of the program in which there are no address arithmetic instructions. Our experiments indicate that,

after GOA, between 1/8 and 1/10 of the instructions are address arithmetic instructions.

7 Summary and Ongoing Work

The optimization techniques described in this paper are incorporated into our framework for

developing compilers for embedded systems [3]. A diagram showing the stages of the compiler is

shown in Figure 10.

We use SUIF [13] as our front-end. Machine-independent optimizations such as global common

subexpression elimination is carried out in SUIF. The SUIF intermediate form is then translated into

another intermediate form called TWIF, which is parametrized according to the machine description.
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Figure 10: A framework for developing compilers for embedded systems

It is on this intermediate form that instruction scheduling, offset assignment, and register allocation

are performed [10], along with machine-specific data-flow analyses and related optimizations. (At the

time of this writing we have only implemented the offset assignment procedure and the final code

generation pass. Scheduling and register allocation are problems we are currently investigating and

will be implemented in the near future.) Object code is then finally obtained through the final phase

of code generation and peephole optimization. Code compression on object code [9] proves to be

effective in further increasing the code density.

Code generation for irregular data-paths and machines with severely restricted instruction sets,

such as those used in DSP and embedded microprocessors, is a problem that has received relatively

little attention to date. Previous work [5, 6, 8, 12] on VLIW machines, microcode generation and

application-specific instruction processors has covered the topic of irregular data paths but restricted
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addressing and code density has never been their primary concern. Liem et al. [11] presented techniques

for generating compact code; however, the benchmark programs were quite small and it is not shown

how their techniques perform on larger, more realistic programs.

With the increasing use of embedded systems, code generation for them has become very important.

In this paper we presented algorithms that are able to exploit the addressing mode features of most

DSP processors. Our initial results indicate that these algorithms can obtain substantial improvements

in code size beyond those provided by conventional code generation techniques. We believe that this

problem bears the same importance for this class of processors as register allocation for general-purpose

RISC architectures.

There are many avenues for further work in offset assignment. Most importantly, scheduling affects

access sequences and therefore leads to different offset assignment problems. This interaction needs

to be taken into account in the scheduling process. The decision to use single static assignment or

to merge variables with disjoint life-times affects the cost of offset assignment as well.

We are also addressing several other code optimization problems that arise in irregular data-paths

[10]. Conventional register allocation is not possible for some DSP processors since the number of

general-purpose registers available could be very small. Minimizing the number of accumulator spills

becomes a relevant optimization problem. Finally, exploiting the different mode settings in instructions

(e.g., unsigned versus signed arithmetic) affords the possibility of generating more compact code.
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